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Superconvergence for Multistep Collocation 

By Ivar Lie and Syvert P. N0rsett 

Abstract. One-step collocation methods are known to be a subclass of implicit Runge- 
Kutta methods. Further, one-leg methods are special multistep one-point collocation 
methods. In this paper we extend both of these collocation ideas to multistep collocation 
methods with k previous meshpoints and m collocation points. By construction, the 
order is at least m + k - 1. However, by choosing the collocation points in the right 
way, order 2m + k - 1 is obtained as the maximum. There are (m+ki 1) sets of such 
4'multistep Gaussian" collocation points. 

1. Introduction. We study the numerical solution of the initial value problem 

(1.1) y'(x) = f(x,y), y(xo) = yo. 

One-step collocation methods for initial value problems have been investigated thor- 
oughly; see, e.g., [13], [16], [14] and [6]. These methods are a subclass of implicit 
Runge-Kutta methods 

m 
(1.2) Yi = Yn +h , aijYj, i _1...,m; 

j=1 
m 

(1.3) Yn+1 = Yn + h E bjf(Yj), 
j=1 

where h is the stepsize. 
The order is at most 2m and is attained for Gaussian collocation points. In 

that case, the implementation is rather costly, which is related to the fact that the 
Runge-Kutta matrix A = {aij}m has at least m - 1 complex eigenvalues. The 
optimal case is a one-point spectrum matrix A. Methods of that type are given 
in [11], where the collocation points are related to zeros of Laguerre polynomials. 
However, the order of such singly implicit methods is restricted to m + 1. 

The idea behind multistep collocation is to let the collocation polynomial use 
information from previous points in the integration. This is illustrated in the figure 
below for 3 previous points and 2 collocation points. 

In this paper we study methods with Lagrange type interpolation conditions (see 
also [9]). Methods with Hermite type conditions are discussed in [8]. 

Multistep collocation methods are a subclass of the General Linear Methods of 
Butcher, and we will prove that this subclass is actually a subclass of multistep 
Runge-Kutta methods. Important special cases of multistep collocation are the 
one-leg methods of Dahlquist [4], [5] and the BDF-methods. They are obtained 
using one collocation point and k interpolation points. 
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FIGURE 1 

Multistep collocation polynomial. 

As to the order, we prove that the maximum attainable order is 2m+k - 1. The 
proof will use the Alekseev-Gr6bner theorem and a specific collocation style tech- 
nique. This family of superconvergent methods is related to Gaussian quadrature, 
and we list some of these "multistep Gauss points". 

In a later paper we will return to other aspects of multistep collocation: C- 
polynomial theory, the question of singly-implicitness, analysis for variable stepsize, 
error estimation and stability properties. 

2. Multistep Collocation. In this section we consider the construction of 
multistep collocation methods for constant stepsize h and give expressions for the 
coefficients for arbitrary values of the number of steps and the number of collo- 
cation points. These expressions will be seen to be natural generalizations of the 
corresponding coefficients in the one-step case. Let u,4+i be approximations to 

Yn+i = Y(Xn+i), i = 0,1,. .,k - 1, and cl,...,cm distinct real numbers. Then 
a k-step multistep collocation method with m collocation points is constructed as 
follows: 

Find u E 11m+k-1 X k > 0, m > 0, such that 

(2.1) U(xn+i) - Un+ij i = 0,1,... , k - 1; 

(2.2) U'(Xn+k-1 + cjh) = f(xn+k-1 + cjh, u(xn+k-1 + cjh)), j = 1, ... , m. 

Then as an approximation to Yn+k we take 

(2.3) Un+k = U(xn+k). 

In order to characterize multistep collocation as multistep Runge-Kutta methods; 
we state the following lemma. 

LEMMA 1. The multistep collocation method (2.1), (2.2), (2.3) can be written 
as a multistep Runge-Kutta method, 

k-1 

y1 = E Xi (tn+k-1 + cjh)Yn+k-l-i 

(2.4) i=O 
m 

+ h E I'Oi(tn+k-1 + c,h)f(tn+k-l + cih, Y1), j = 1,.. ,; 
i=1 

k-1 m 

(2.5) Yn+k = fOi(tn+k)Yn+k-i-i + h >J 1 i(tn+k)f (tn+k-1 + cih, Y1), 
i=O i= 1 
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where 4i (s), O i(s) E 11k+m- 1 are uniquely given by 

(2.6) i(=) = Dk,i k > 1, Do = 1 1 < i <m 
Dk-l' 

tith 
0 k-1 

(2.7) Dkl = det r''M(r) d k- 
-i ~~~i,j= 1 

and 
(2.8) 

rO li(s) ds 
rO (s) ds * MO sk2(s) ds 

-fld)d 0M8)8 ... fs8k-2M )d 

Dk,i =det f2rli(8)d f21M(8)d8 f.18k-2M(8)ds 

fu(k-i) li(s) ds f2(k-1) M(s) ds ... fu(k-1) s3 M(s) ds 

where 
m Mt 

M(t) = II(t - ci), li(t) = (t - )M(ci) 
i= 1 

Further, 

(2.9) Oo(s) = 
Dke 1 k > 1,DO = 1; 

(2.10) Oi(s) 
k k>lDo=l, 1<i<k-1, 

with 
(2.11) 

f1 fM(8)d8 fO sM(s)ds ... fo99k-2M () d8 

Dk,edet -1 kf2MM(s)ds W(s)ds ... f....M (s)ds 

1 fu(k-1) M(s) ds f2u(k-i) 8M(8) ds ... fu(k-1) sk-2M(s) d& 

and 
0 f M() ds) ds . f o8 2M(8)ds 

(2.12) Vk=det 1 f01M(8)d8 f. 8k-2M(8) ds 
0 

0 f(k-) M(s) ds ... f(k) sk-2M(s) ds 

where the one in the first column is in position i + 1. 

Proof. To see that multistep collocation are multistep Runge-Kutta methods, 
put Y1 = U(tn+k-1 + cjh), kj = u'(tn+k-1 + cjh) = f (tn+k-1 + cjh, Yj). Consider 
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the interpolation problem (2.1), (2.2) for u. The interpolation data are u,+i, = 

O, ... , k - 1, and f (t.+k-1 + cjh, Yj), j = 1,... , m. The interpolation polynomial 

can be written in the following form: 

k-1 m 

(2.13) u(t) = O)i(t)Un+k-1-i + h E i(t)f (tn+k-1 + cih, Yi). 
i=O i=1 

(2.4) and (2.5) then follow from (2.13) and (2.3). 

We now exhibit the form of the coefficients. We will use the scaled time variable 

8 = (t - tn+k-l)/h. This implies, e.g., that (2.4) can be written as 

k-1 m 

Y3 = Zki(Cj)Yn+k-l-i + hZ Vi(cj)f(ci,Yi), j= i,..,m. 
i=O i=1 

Consider ti (s) first. 
From the interpolation conditions (2.1), (2.2) and the expression for u(t) in (2.13) 

we see that the following conditions are imposed on V)i: 

(2.14) )i (- r) = O, r = ,1 0 , k -1; 

(2.15) Qb(cj) = 6ij. 

The latter condition can be satisfied with a polynomial of the following form: 

k-2 k-2 

(2.16) V)i(s) = li (s) [1 + E aj (s9-ci)i = li (s) + E M(S)Si, 
j=0 i ai~~j= 

where ai is the denominator of li(s). Setting Yj = aj/ai and integrating, we find 

a k-2 a 

i(s) = J i 4(r) dr + , oj f r'M(r) dr, 
? ~~j=o 

and we have a linear system for the aj's from (2.14) (excluding the trivial 

i (O) = 0): 
)= 0, 

- 1)) = 0, 
or 

k-2 o O 

(2.17) E Zi lsiM(s) ds = li(s) d)d , r =1,...,k-1. 
i=o -r -r 

The determinant of the coefficient matrix of this system is Dki1. By Cramer's rule 

we obtain 
oj =Dk-,i/Dk-1, 

where Dk_l,j is the determinant obtained by replacing the jth column with the 

right-hand side of (2.17). 
For VI (s) we have 

(2.18) tib(S) = Dkn1 ( j (s)dsDk1 + Dkl,j j sMd(s).ds 
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But the parenthesis above is just an expansion of Dk,O along the first row. Thus, 
(2.6) is established. 

Now consider qi(s). The conditions imposed on Xi are 

(2.19) (cj) = O, j =1,...,m, i = O,..., k - 1; 

(2.20) i (-j) = ij,I i, j = O,1, .. ., k- 1. 

The first part of the conditions can be fulfilled with 

k-2 

(2.21) i()=a(') + Ea(i 81 M s (s) ds. 
j=o 

Consider k0 first. From kO(O) = 1 there follows that ac0) = 1, and (2.20) gives 

k-2 0 

(2.22) Ea()l s| iM(s) ds, = 1, r = 1, .. ., k - 1. 
j=O -r 

This is identical to (2.17) except for the right-hand side. Thus we will have the same 
expression as (2.17) except for the first column of Dk-i which will be substituted 
by all ones. 

Now consider Oi, i > 0. In this case, a(i) = 0, and (2.20) gives 

k-2 0 

(2.23)E a..+)1| siM(s) ds =-i r = 1, ... ., k-1 
j=O -r 

Thus we get the same expression as for ko(s) except for the first column of Dk,e 

which is substituted by zero and ei (the ith basis vector of Rk-l). 

Thus (2.10) is established. O 
Remark. We see that multistep collocation in the form (2.4), (2.5) can be put in 

the partitioned multivalue formalism of Burrage and Moss [3], which is given by 

k m 

(2.24) Yi ( 1) (n-i 1) + h E W) f(tn+k- + cjh, Yj), i = 1,...,m; 
j=1 j=1 

k m 

(2.25) yin) = (n1) + h EJ by2)f(tn+k-1 + cjh, Y), i = 1, ... , k. 
:=1 j=1 

Here, Yi, i = 1, ... , m, is a vector of interior ordinates and y(n) i - 1 ... , k, is a 
vector of exterior ordinates in "generation" n. By setting 

A1= {a(l)} E Rmxk B= {b()} E RmXm 

A2 - {a(2)} E Rkxk B = {b2)} E Rkxm; 

Y [Yl,...,Ym]T and y(n) = [y (n) y(n)] 

one can write more compactly 

(2.26) [y(n)] ([A2 B2] n [hf(Y) 
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Example 1. For k= 2 the coefficients become 

1 | 1 fg l (8)ds f+M(s)ds 

(2.27) )4'M (8)= s 
)ds- rf011(s)ds f| rlM(s)ds 

f (l8 l( s) d fMM(s 1ds, 
Jo f21 M(s) ds J 

c o = s 1.1 1 fWeM(s) 1 s + folwM() )ds 

f" = s)ds-1 f 1M(s)ds- f+ 01M(s) ds 
(2.28) Y = Y2 

his= 1 fos fM () - fM(s) ds 
f_1M(s) ds +1 f 1M(s) ds 

Two-step collocation is also studied in [12], but the general expressions for the 
coefficients are not given. 

Example 2. We now give for k = 2, m = 2, a specific method with Cl =1/4, 
Thi= 1.0. We get the following method: 

The~~ y =re of- mutite coloct6ion is m + h- by contrcton so asumn mY + 

(2.29)3412 
Y= 

FgYn 
- 

FgYn-281 +h(T7f (Yi) + 
726(2 

(2.30) Yn+1 = 1'2. 

This method has order 3 and is almost A(a) stable with a close to ar/2. 

3. Order Results. In this section we give order conditions for the multistep 
collocation method in two different forms, both of which are simpler than the 
corresponding conditions in "standard Runge-Kutta form" given by Burrage in [2]. 
This is possible because of the way multistep collocation methods are constructed. 
The order of multistep collocation is m + k - 1 by construction, so assuming m + 
k - 1 > 1, the preconsistency and consistency conditions (see [6]) are automatically 
fulfilled. 

3.1. Order Conditions of RK- Type. Burrage [2] considers the order of mul- 

tistep RK-methods, and by referring to the matrices in the PMVM-formulation 

(Eartitioned Multivalue Method, Burrage and Moss [3]), these conditions are as 
follows: 

Let c be the vector [Cl, .. ., Cm]T and q(t) be the term for the tree t in the Butcher 
series for the starting procedure. The following short notation is introduced: 

(3.1) A(w): q(t) = q(rP) for all rooted trees # TP of order p, 

(3.2) A(w): A(w - 1) A (A2 - Ik)[q(rW) - q(t)] = 0 for all t : r"' of order w, 

(3.3) B(w): pB2cP_1 + (A2 - Ik)q(rP) -E (P)q(ri) = 0, p = OX 1*... IwW 

(3.4) C(w): Alq(rP) = cP _ pB,cP-1, p = O, 1,.. .,w. 
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Then we have 

(3.5) A(w) A B(w) A C(w-1) implies order w. 

Burrage gives conditions for order up to 2m+k- 1, but does not prove that solutions 
to the conditions really exist, notwithstanding a statement in [2] to this effect. 

Instead of following Burrage's approach, we will in the following two paragraphs 
develop specific conditions for multistep collocation methods which are simpler than 
the ones above. 

3.2. Superconvergence, Alekseev-Gr6bner Approach. Consider now a multistep 
collocation with k steps and m stages as specified in (2.4) and (2.5). The corre- 
sponding collocation polynomial is given by 

m 
M(8) = fJ(8-cj). 

i=l 
In the one-step case, N0rsett and Wanner [13] showed that the Alekseev-Gr6bner 
theorem gives a very short proof of order results. The same should be possible in 
the multistep case, and this is in fact what we use in the proof of the following 
theorem. 

THEOREM 1. Let 

f-1 M(.)si ds ... f 1 M(8)8s+k-l d8 

(3.6) Gi= det 

f2(k-1) M(8)8s ds fu ff(k-1) M(8)8i+k-l ds 

Lf M(s) s' dx lf M(s)8i+-1 ds 

Then the multistep collocation method (2.4), (2.5) has order m + k - 1 + v if and 
only if Gi = Ofori=O,1,...,v- 1. 

Proof. (We are grateful to G. Wanner for providing ideas to this proof.) We 
study the error in the method (2.1), (2.2) under the assumption that un+i = Yn+i= 
y(tn+i), i = O.. . , k - 1, and use the Alekseev-Gr6bner theorem (see, e.g., [12]): 

rt 
(3.7) u(t) - y(t) = J 4(t, r, u(r)) * (u'(r) - f (Tr (T))) dr, 

where 4) is a variational matrix. From the conditions (2.1) we get, using now the 
s-variable and assuming h = 1 and tn = 0, 

(3.8) 4 (u'(r) -f(r, u(r))) dr = O, r =O, 1, ..., k- 1. 
-r 

With p(r) = 4 (u'(r) - f(r,u(r))), the error is 

(3.9) u(1) - y(l) = pr) dr. 

We construct a quadrature formula similar to that in [13] for functions in the linear 
subspace 

V= p p(rT)dr = O,... , p(r)dr = 0. 
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Any p E V is approximated by an interpolation polynomial p E V such that p(ci) = 

p(ci) and hence 

(3.10) p(s) - p(s) = M(s) r(s), M(s) r(s) E V. 

The error for the quadrature formula is then 

J M(s)r(s) ds. 

We want this error to be zero for r a polynomial of as high a degree as possible. 
Let 

k-1 

ri(s)=Zalsi+L, i=0,1. 
1=0 

Then the condition M(s)ri(s) e V becomes 

f1 M(s)st ds f 1 M(s)sk lds [ ao 

(3.11) . =0, 

f-(k-1) M(s)s ds u M(s)si+k-1 ds ak-1 

and the order condition fg M(s)ri(s) ds = 0 is 

(3.12) M(s)stds,...,j M(s)si+k-1 ds1 [ ] =0. 

Lak-lj 

(3.11) and (3.12) possess a nontrivial solution if and only if Gi = 0. By apply- 
ing the conditions (3.11) and (3.12) for i = 0, 1, ... , v - 1, the theorem is estab- 
lished. O 

As a consequence of this theorem, we have the following result on maximum 
order. 

THEOREM 2. The maximum order of multistep collocation methods given by 
(2.4) and (2.5) is 2m + k - 1. 

Proof. The condition Gi = 0 is a nonlinear relation between cl,... ,cm. r of 
these conditions form a set of nonlinear equations F(f) = 0 where r: Rm -+ R'. 
A unique solution to P(S) = 0 exists if and only if r = m (see, e.g., [15, Theorem 
4.2.21). O 

The following theorem states that multistep collocation methods will attain max- 
imum order only if they are in ordinate form. The argument can be found in [2, 
Example 121 or can be inferred from the proof of Theorem 1. 

THEOREM 3. The maximum attainable order, 2m+k-1, for a multistep Runge- 
Kutta method is achieved only in ordinate form. The maximum attainable order is 
reduced by one for each y(n) representing approximations to derivatives. 

3.3. Superconvergence, Collocation Approach. We now derive order conditions 
in a different form, without the use of the Alekseev-Gr6bner theorem. 
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As a starting point, we use an alternative expression to (3.7): 
f tn+k 

(3.13) U(tn+k) - Y(tn+k) = W (u - fQ(r, y(r))) dr. 
tn 

Switching to s-variables, s = (t - tn+k l)/h, and letting tn+k.1 = 0, h = 1, we set 

((s) = u'(s) - f(s,y(s)) 

and so 

0(s) =_u(s) - y(s) = j q(r) dr. 

Order p then corresponds to /(1) = 0 for polynomials +b(s) up to degree p, or the 
error of interpolating y(s) by u(s) is zero for polynomials up to degree p. 

From the construction of multistep collocation methods we have the following 
interpolation conditions: 

(3.14) u(-r) = y(-r), r = O ..., k- 1; 

u'(cj) = y'(cj), j = 1,.. ,m; 

hence, for the analysis, we can choose 

(s) = ir(s) R( s), 

(3.15) k-1 

(r(s) = JJ (s + i), R(s) a polynomial. 
i=-l 

The collocation condition then gives the order condition 

(3.16) d [7r(s)R(s)] s9=cj = 0, j = 11 ... I m. 

Therefore, we have 

THEOREM 4. The multistep collocation method has order m + k -1+ v if (3.16) 
is satisfied for polynomials R(s) of degree 0, .. ., v - 1. 

From now on we will concentrate on finding algebraic conditions on the collo- 
cation points such that the multistep collocation method has maximum attainable 
order 2m+k- 1. This family of methods is related to multistep Gaussian quadrature 
discussed, e.g., in Krylov [7, Chapter 16]. The values of the collocation points for 
these (2m + k - 1)-order methods are therefore called Gaussian points for multistep 
collocation. 

In order to study them, we use quadrature theory and construct the interpolation 
formula 

k-1 m 

(3.17) u(s) = E cjy(-j) + ,ljy'(cj), 
j=O j=1 

which follows naturally from (3.14); the a-' and 83 are unknown. Order 2m + k - 1 
is equivalent to the conditions 

k-1 m 

(3.18) E a +(_j)k + 3jkc- =k k, k = O,..., 2m + k-1. 
j=o j=i 
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This is an overdetermined set of equations for aj and /,j, and the problem can be 
studied by comparing it to a related interpolation problem as done in Krylov [7, 
Chapter 16]. 

We extend the interpolation in (3.17) to include y-values also at c3,j = 1,... m, 
and we obtain the formula 

k-1 m m 

(3.19) u(s) = Ej c4y(-j) + E -yjy(cj) + E>f3,y'(cj). 
j=O j=1 j=1 

Order 2m + k - 1 now gives 
k-1 m m 

(3.20) a, (_j) k + jcj + 8kCk-1 = sk, k = O, . . . ,2m + k-1. 
j=O j=l j=1 

These are 2m + k equations for 2m + k parameters. The problem can be uniquely 
solved provided 

cj3#-r, j=1,...,m, r=O,...,k-1. 

The relationship between (3.18) and (3.20) is given by the following two proposi- 
tions. 

PROPOSITION 5. Suppose (3.18) has a solution. Then this solution is unique, 
and the unknowns in (3.20) satisfy the following relations: 

a =cj, j=0,...,k-1; 

Proof. Obvious. O 

PROPOSITION 6. If the numbers a'., -yj and are a solution of (3.20) and if 
= 0, j = 1, .. ., m, then the system (3.18) has a solution, and 

ai a/-, j= ,...,m. i 

Proof. Obvious. O 
By Hermite's interpolation formula, we can write (3.19) as 

k-1 A(s) () 
M 

Aj(s) I_A_(cj) u(s) E (sA+ j)A(s-cj) + A -(8 cj)I 
(3.22) j=O 

s j)A j = j(cj) 
- 

Aj (cj 

where 
k-1 A(s) 

A(s) = #(s)M(s), i (s) = J(s+j) Aj(s) = (s (c3)22 
j=O 

Now (3.18) is solvable if -yj = 0, j = 1, . . ., m, or 

(3.23) A [1 - (s Cj) ,I3 ] =0, j=1, . 



SUPERCONVERGENCE FOR MULTISTEP COLLOCATION 75 

Since Aj(s)/Aj(c;) 5 0, the expression in brackets must be zero. Dividing by 
(s - cj) and setting s = -1, we get 

k-1 m 

(3.24) Z+ 1 2 _0 M. 
j=1 - 

joi 

Thus we have 

THEOREM 7. The multistep collocation method has maximum attainable order 
2m + k - 1 if the conditions (3.24) are satisfied. 

COROLLARY 8. The conditions (3.24) can be formulated in the following waw. 

(3.25) d [7r(S)M'(s)] I = 0, i = 1,... M; 

(3.26) d [r(s)M'(s)] - K(s)M(s) = 0, K(s) E Hk-1, 

Proof. From (3.23) we have 

Aj(cj) + (c, - s)A,4(cj) = d[(z - s)Aj(z)] I z = 0 

or 
d (z - s)A(z)1 =0 

d L (z -c) J z=cj 
Now (z - s)A(z) 7 r=Z = r(z)M2(z), so we have 

d 7ri(z) M2 (Z)] = 

dz[ (z - Cj)2 J =c 

or, equivalently, 

M'(cj) {d [7r(Z)M'(Z)] } =0. 

Since M'(cj) $ 0, we have (3.25), and (3.26) follows immediately. O 
Example 9. The case m = 2. We can obtain the result directly from Theorem 4 

and by setting 

2 

RI (s) = air(s)Al (s), 
i=l 

ri(s) = 1, r2(s) = (a - ci), 

Then (3.16) gives the conditions for a. $ 0: 

[ f2 1 1 
det J =0, 

L'f21 A12f2 

' 1 0 
det 2L _2_fA2 =0, 
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where fi = r'(cj)/7r(cj), i = 1,... , m. The last determinant gives f2 = 2/A12, and 
inserting it in the first determinant yields f2 = -2/A12. Thus, the conditions for 
order 2m + k - 1 = k + 3 are 

(3.27) cl = C2 + 2 '(c )' C2 1+ ) 

In order to show that a k(k + 1)/2 solution set exists, we set 

f(x) = x 2r(x) S(X)=X+2 ,(X)) 

Then 

k=-i 

and therefore 

f(x) =1 + (2 E ( + )/(Z 1 )2 

so that f'(x) > 1. 
f(x) has vertical asymptotes at k different points (j, j - 1 < (j < j, j = 

-(k - 1), .., O, 1. But 

(3.28) C1 = f(c2), C2 = f(ci), 

and cl = c2= j, j = -(k - 1), ... I O, 1, are solutions to (3.28). Hence, by looking 
at the case k = 3 in Figure 2 below, Theorem 7 is established for m = 2 and general 
k. 

0n SOLUTION POINTS 
DISTINCT, UNSYMMETRIC 

(-2,- ) to 1 

FIGURE 2 
The roots of Eqs. (3.26) for k = 3. 

The general case, for m > 1 and k > 1, is more complicated, but very interesting. 
Krylov [7] has indicated one way of solving (3.18) and gives both the number and 
location of these new multistep Gaussian collocation points. Further, Munthe-Kaas 



SUPERCONVERGENCE FOR MULTISTEP COLLOCATION 77 

[10] has given a different proof for the location. The result is: 

THEOREM 10. There exist (m+k- 1) different sets of multistep Gaussian col- 
location points. For each solution, all points are in (0, k) x ... x (0, k), m times, 
and cover the number of possibilities for placing m points in k boxes. Each box is 
a unit m-cube. 

Example 11, k = 2. As already mentioned, k = 1 is the one-leg method case 
(Dahlquist [5]). In Example 7 we discussed m = 2 in detail. Now we take a closer 
look at the k = 2 case. For reasons of symmetry we transform [0, 2] to [-1,1]. 
With N(x) = M(x + 1) and 7r(x) = X3 - X, Corollary 8 shows that N is given as 
the solution to 

(3.29) (7r(x)N'(x))' = (ax + ,)N(x), a = m(m + 2), 
where 8 E R has to be such that N E Ilm is a solution. If we write N(x) as 

m 

N(x) = E aixi 
i=O 

and let a = [ao, ... , T, (3.29) can be formulated as an eigenvalue problem, 

-O 0- - O . 0 

(Q!+1) 1 * a+ -1 m a = fa. 

0 1 0 , O M2 0 

Bo B, 

A simple similarity transformation shows that A = (a + 1)Bo + B1 has m + 1 
distinct real eigenvalues. Further, by Theorem 10, N(t) for each ,6, has its zeros in 
[-1,1]. 

Example 12. A list of some Gauss points for multistep collocation. 
A.1. The case m = 2. The values for cl and C2 given below are solutions of the 

equations (3.27) now with 7r(x) = Hlk=O(x - i) for k = 1, 2 and 3. 

TABLE 1 

Superconvergence points for m = 2. 

k C2 C l 

1 0.7886753297 0.2113246703 

2 1.811992988 1.246307547 
1.707106495 0.2928930738 
0.7536913702 0.1880068962 

3 2.824784952 2.268118793 
2.733496435 1.350620934 
2.691981695 0.308018285 
1.781388803 1.218611204 
1.649379062 0.2665035178 
0.7318816461 0.1752150475 

A.2. The case m = 3. The values for c1, C2 and C3 in the table below are solutions 
of the equations (3.25) with the same definition of ir(x) as in the above case, and 
for k = 1,2 and 3. 
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TABLE 2 

Superconvergence points for m = 3. 

k C1 C2 C3 

1 0.5 0.1127 0.8872985 

2 0.472138769 0.103442225 0.872652779 
0.657746108 0.146272877 1.7916885 
0.208310888 1.34225096 1.85372677 

_ 1.52789351 1.12734965 1.89658989 

3 0.472138769 0.10344225 0.872652779 
0.630448352 0.136471747 1.75608279 
0.678545252 0.150853918 2.75017481 
0.193452664 1.30561654 1.83110796 
0.219926084 1.50 2.7800748 
0.249822439 2.32146216 2.84915055 
1.50 1.11644204 1.88356046 
1.69438365 1.16889076 2.80654825 
1.24391845 2.36954280 2.86352430 
2.54410830 2.13643923 2.90180432 

4. Conclusion. We have derived conditions for superconvergence for multistep 
collocation methods. These conditions are given in forms which are easily com- 
putable for practical values of m and k. The analysis in this paper is done for the 
idea of multistep collocation. Analysis of variable stepsizes will be carried out in 
forthcoming papers. Another aspect to be considered is the properties of a variable 
coefficient version of the methods. 

In [9], an error estimation technique for multistep collocation based on mul- 
tistep perturbed collocation is described, and this technique has been used as a 
stepchanging mechanism for an experimental code described in [9]. This error 
estimation technique, as well as stability properties for variable stepsize, will be 
investigated in forthcoming papers. 

Other aspects to be analyzed for multistep collocation are C-polynomials, singly- 
implicitness and various implementation details. 
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